Preferential Diffusion Effects on the Burning Rate of Interacting Turbulent Premixed Hydrogen-Air Flames
نویسندگان
چکیده
The upstream interaction of twin premixed hydrogen-air flames in 2-D turbulence is studied using direct numerical simulations with detailed chemistry. The primary objective is to determine the effect of flame stretch on the overall burning rate during various stages of the interaction. Preferential diffusion effects are accounted for by varying the equivalence ratio from symmetric rich-rich to lean-lean interactions. The results show that the local flame front response to turbulence is consistent with previous understanding of laminar premixed flames, in that rich premixed flames become intensified in regions of negative strain or curvature, while the opposite response is found for lean premixed flames. The overall burning rate history with respect to the surface density variation is found to depend on the mixture condition; the consumption rate enhancement advances (follows) the surface enhancement for the rich-rich (lean-lean) case. For the lean-lean case, a self-turbulization mechanism results in a large positive skewness in the area-weighted mean tangential strain statistics. Because of the statistical dominance of positive stretch on the flame surface, the lean-lean case results in a significantly larger burning enhancement (over a twofold increase) in addition to the surface density production. For the case of rich-rich interaction, the abundance in hydrogen species results in an instantaneous overshoot of the radical pool in the post-flame region, resulting in an additional “burst” in the reactant consumption rate history, suggesting its potential impact on the pollutant formation process. © 2002 by The Combustion Institute
منابع مشابه
Influence of Preferential Diffusion in Turbulent Lean Premixed Hydrogen-Rich Syngas Spherical Flames at Elevated Pressure
The objective of this work was to investigate the influence of preferential diffusion on flame structure and propagation of lean-premixed hydrogen-carbon monoxide syngas-air flame at elevated pressure using direct numerical simulation (DNS) and detailed chemistry. The physical problem investigated is lean-premixed H2/CO outwardly propagating turbulent spherical flame at constant pressure of 4ba...
متن کاملA study of the effects of diluents on near-limit H2–air flames in microgravity at normal and reduced pressures
A combination of microgravity experiments and computational simulations were used to study effects of diluents on the near-limit properties of laminar, premixed hydrogen/air flames. The experiments were conducted in a short-drop free-fall laboratory facility that provided at least 450 ms of 10−2g conditions. Outwardly propagating spherical flames were used to measure near-limit laminar burning ...
متن کاملSuppression effects of diluents on laminar premixed hydrogen/oxygen/nitrogen flames
Laminar burning velocities and the flame response to stretch, as characterized by Markstein numbers, were determined experimentally and computationally for outwardly propagating spherical laminar premixed flames. The mixtures studied were premixed hydrogen/air/diluent and hydrogen/30% oxygen and 70% nitrogen (by volume)/diluent flames, with the latter condition of interest for pre-external vehi...
متن کاملChemically-Passive Suppression of Laminar Premixed Hydrogen Flames in Microgravity
Effects of chemically-passive fire suppressants on laminar premixed hydrogen flames were investigated by combined use of microgravity experiments and computations. The experiments used a short-drop free-fall laboratory facility that provides at least 450 ms of 2 10 g. Near -limit laminar burning velocities were measured for outwardly propagating spherical stoichiometric hydrogen-air flames with...
متن کاملNumerical Simulation of Nitrogen Oxide Formation in Lean Premixed Turbulent H2/O2/N2 Flames
Lean premixed hydrogen flames are thermodiffusively unstable and burn in cellular structures. Within these cellular structures the flame is locally enriched by preferential diffusion of H2. This local enrichment leads to hot spots in which the flame burns with considerably more intensity than the corresponding laminar flame. In this paper we investigate the impact of this local enrichment on th...
متن کامل